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Abstract: We study fluctuations of time-dependent fuzzy two-sphere solutions of the non-

abelian DBI action of D0-branes, describing a bound state of a spherical D2-brane with

N D0-branes. The quadratic action for small fluctuations is shown to be identical to that

obtained from the dual abelian D2-brane DBI action, using the non-commutative geometry

of the fuzzy two-sphere. For some of the fields, the linearized equations take the form of

solvable Lamé equations. We define a large-N DBI-scaling limit, with vanishing string

coupling and string length, and where the gauge theory coupling remains finite. In this

limit, the non-linearities of the DBI action survive in both the classical and the quantum

context, while massive open string modes and closed strings decouple. We describe a

critical radius where strong gauge coupling effects become important. The size of the

bound quantum ground state of multiple D0-branes makes an intriguing appearance as the

radius of the fuzzy sphere, where the maximal angular momentum quanta become strongly

coupled.
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1. Introduction

We consider a time-dependent spherical D2-brane system with homogeneous magnetic flux.

This is described by a fuzzy sphere solution to the non-abelian action of N D0-branes or

equivalently by an abelian D2-brane action. The classical solutions have been studied in

the context of Matrix Theory and non-abelian DBI in [1 – 6]. Related systems involve

D1⊥D3 brane intersections [7 – 9]. Equivalence at the level of classical solutions exists in

a large class of examples [5, 10, 11] including higher dimensional fuzzy spheres [12 – 16]. It

is natural to explore whether the equivalence at the level of classical solutions extends to

an equivalence at the level of quadratic fluctuations.

In this paper we study the fluctuations of the time-dependent D0-D2 brane system. In

section 2, we consider the action for fluctuations using the D2-brane action. We find that

the result is neatly expressed in terms of the open string variables of [17]. The quadratic

action is a (U(1)) Yang-Mills theory with a time-dependent coupling, effective metric and a

Θ-parameter. The radial scalar couples to the Yang-Mills gauge field. We analyze the wave

equation for the scalar fluctuations and identify a critical radius of the fuzzy sphere where
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strong coupling effects set in. This radius is different for different values of the angular

momentum of the excitations. The fluctuation equation for scalars transverse to the R
3

containing the embedded sphere turns out to belong to the class of solvable Lamé equations.

It is very interesting that such an integrable structure appears in a non-supersymmetric

context.

In section 3, we obtain the quadratic action for fluctuations on the sphere from the

non-abelian symmetrised trace action [18] of N D0-branes. We find precise agreement with

the action obtained from the D2-side. The fact that the commutators [Φi,Φj ] contain terms

which scale differently with N means that we need to keep 1/N terms from commutators of

fields. The noncommutative geometry of the fuzzy sphere [19, 20] is reviewed and applied

to this derivation. We observe that the mass term for the radial scalar we obtain can also

be calculated from the reduced action for the radial variable. This simple calculation is

extended to higher dimensional fuzzy spheres and shows similar qualitative features.

In section 4, we describe a DBI scaling limit, where N → ∞ , gs → 0 and `s → 0

keeping fixed the quantities L = `s

√
πN , g̃s = gs

√
N along with specified radius variables

and gauge coupling constants. In this limit, the non-linearities of the gauge coupling, which

have a square root structure coming from the DBI action, survive. We discuss the physical

meaning of this scaling and its connection with the DKPS limit [21], which is important

in the BFSS Matrix Model proposal for M-theory [22].

In section 5, we conclude with a discussion of some of the issues and avenues related

to the fluctuation analysis of the collapsing D0-D2 system.

2. Yang-Mills type action for fluctuations

When the spherical membrane is sufficiently large, we may use the Dirac-Born-Infeld (DBI)

action to obtain a small fluctuations action about the time dependent solution of [3]. The

DBI action is given by

− 1

4π2gs`3
s

∫

dt dθ dφ
√

− det(hµν + λFµν) , (2.1)

where λ = 2π`2
s ; hµν is the induced metric on the brane and Fµν describes the gauge field

strength on the membrane. The gauge field configuration on the brane consists of a uniform

background magnetic field, Bθφ = N sin θ/2, and the fluctuations fµν : Fµν = (B + f)µν .

The background magnetic field results from the original N D0-branes, which dissolve into

uniform magnetic flux inside the D2-brane.

To quadratic order in the fluctuations, the action will involve a Maxwell field cou-

pled together with a radial scalar field controlling the size and shape of the membrane.

The parameters of this theory will be time-dependent because we are expanding about

a time dependent solution to the equations of motion. For the radial field we write

R̃ = R + λ(1 − Ṙ2)1/2χ(t, θ, φ), where R satisfies the classical equations of motion and

χ describes the fluctuations. The normalization is chosen for later convenience. We also

take into consideration scalar fluctuations in the directions transverse to the R
3 containing

the embedded S2 of the brane worldvolume, described by six scalar fields λ ξm(t, θ, φ).
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Using the equations of motion, we have that the background field R satisfies the following

conservation law equation [3]

1 − Ṙ2 =
R4 + N2λ2/4

R4
0 + N2λ2/4

=
R4 + L4

R4
0 + L4

. (2.2)

We have introduced the physical length L defined by

L2 =
Nλ

2
, (2.3)

which simplifies formulas and plays an important role in the scaling discussion of section 4.

Here R0 can be thought of as the initial radius of the brane at which the collapsing rate

Ṙ is zero. The solution R(t) to (2.2) decreases from R0 to zero, goes negative and then

oscillates back to its initial value. It was argued, using the D0-brane picture [5], that the

physical radius Rphys should be interpreted as the modulus of R. Hence this is a periodic

collapsing/expanding membrane, which reaches zero size and expands again. The finite

time of collapse is given by

t̄ = c

√

R4
0 + L4

R0
, (2.4)

where the numerical constant c is given by K(1/
√

2)/
√

2, with K a complete elliptic inte-

gral.

To leading (zero) order in the fluctuations, the induced metric hµν on the brane is

given by

ds2 = −(1 − Ṙ2)dt2 + R2(dθ2 + sin2 θdφ2). (2.5)

From the form of the induced metric we see that the proper time T measured by a clock

co-moving with the brane is related to the closed string frame time t by a varying boost

factor

dt =
dT

√

1 − Ṙ2
. (2.6)

So an observer co-moving with the collapsing brane concludes that the collapse is actually

occurring faster. In terms of proper time, the metric takes the form of a closed three-

dimensional Robertson-Walker cosmology

ds2 = −dT 2 + R2(T )(dθ2 + sin2 θdφ2) (2.7)

with scale factor R. The analogue of the Friedman equation is the conservation law (2.2).

Expanding the DBI action to quadratic order in the fluctuations we obtain the follow-

ing:

S2 = −
∫

dt dθ dφ

√
−G

2g2
Y M

[

1

2
GµαGνβfµνfαβ + Gµν∂µχ∂νχ + m2χ2 + Gµν∂µξm∂νξm

]

.

(2.8)

The effective metric Gµν seen by the fluctuations is given by

ds2
open = −(1 − Ṙ2)dt2 +

R4 + L4

R2
dΩ2 . (2.9)
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As we will see it is precisely the open string metric defined by [17] in the presence of

background B-fields. The coupling constant is given by

g2
Y M =

gs

`s

√
R4 + L4

R2
, (2.10)

and the mass of the scalar field is given by

m2 =
6R2

(1 − Ṙ2) (R4 + L4)2
(

L4 − R4
)

. (2.11)

As expected, linear terms in the fluctuations add to total derivatives once we use the

equations of motion for the scale factor R.

The set-up here differs from the original set-up of Seiberg/Witten [17] in that we have a

non-constant B-field, Bθφ = N sin θ/2. However the basic observation that in the presence

of a background magnetic field, the open strings on the brane see a different metric Gµν

from the closed string frame metric1 hµν

h00 = −(1 − Ṙ2)

hθθ = R2

hφφ = R2 sin2 θ (2.12)

continues to be true. The metric Gµν is indeed related to hµν by

G00 = h00, Gab = hab − λ2(Bh−1B)ab (2.13)

or

Gµν = hµν − λ2(Bh−1B)µν . (2.14)

The open string metric (2.9) is qualitatively different from the closed string metric. Despite

the fact that the original induced metric hµν becomes singular when the brane collapses

to zero size, the open string metric Gµν is never singular. To see this, let us compute the

area of the spherical brane in the open string frame. This is given by

A = 4π

(

R2 +
L4

R2

)

. (2.15)

As R varies, this function has a minimum at R = L, at which Amin = 4πNλ and the

density of D0-branes is precisely at its maximum 1/4πλ; that is, of order one in string

units. Effectively, the open strings cannot resolve the constituent D0-branes at distance

scales shorter than the string length.

The coupling constant can be expressed as g2
Y M = Gs`

−1
s , where

Gs = gs

(

det Gµν

det(hµν + λBµν)

)1/2

= gs

√
R4 + L4

R2
. (2.16)

1More precisely, the metric hµν is induced on the brane due to its embedding and motion in the back-

ground flat closed string geometry. Distances on the brane defined by using hµν are also those measured

by closed string probes. Thus we shall call hµν the ‘closed string metric’.
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So as R decreases, the open strings on the brane eventually become strongly coupled.

There is also a time-dependent vacuum energy density

S0 = − 1

4π2gs`3
s

∫

dt dθ dφ
√
−G

R2

√
R4 + L4

. (2.17)

This vacuum energy density can be interpreted as the effective tension of the brane in the

open string frame. In terms of the D2-brane tension T0 = 1/4π2`3
s, this is given by

Teff = T0
R2

√
R4 + L4

. (2.18)

We see that the brane becomes effectively tensionless as R → 0. This is another indication

that the theory eventually becomes strongly coupled. The mass of the scalar field χ is

a measure of the supersymmetry breaking scale of the theory. Supersymmetry is broken

because the brane is compact: the mass tends to zero as R → ∞.

There is a linear term

S1 =
1

2λ2

∫

dt dθ dφ

√
−G

g2
Y M

Θabfab, (2.19)

which is a total derivative, and can be dropped if we restrict to gauge fields of trivial first

Chern class. It is noteworthy that the open string Θ parameter, given by the standard

formulas in terms of closed string frame parameters [17], is precisely what appears here,

Θab = λ

(

1

h + λB

)ab

A

. (2.20)

In terms of R this is given by

Θθφ = − 2

N

L4

(R4 + L4) sin θ
. (2.21)

The interpretation of Θ as a non-commutativity parameter will be made more clear in

section 4. Notice that this attains its maximum value as R → 0, at which point Θ ∼
2/N sin θ being equal to the inverse background magnetic field.

In addition, there is a non-zero mixing term between the field strength fµν and the

scalar field χ to quadratic order in the fluctuations. This is given by

Sint = −
∫

dt dθ dφ

√
−G

λg2
Y M

2R3

√

1 − Ṙ2
(

λ2N2

4 + R4
)χΘabfab

= −
∫

dt dθ dφ

√
−G

L2g2
Y M

R3

√

1 − Ṙ2 (L4 + R4)
χ(NΘab)fab. (2.22)

The second line makes it clear that this term is of order one if we consider the physical

scaling limit2 `s → 0, N → ∞, gs → 0 while keeping R and L fixed. Therefore, it

2More on that in section 4.
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is comparable to the other terms appearing in the fluctuation analysis. In performing

various integrations by parts we have made extensive use of the fact that the combination

(
√
−GΘθφ)/g2

Y M is given by

√
−G

g2
Y M

Θθφ = −λ2N`s

2gs

√

1 − Ṙ2

R4 + λ2N2

4

= −λ2N`s

2gs

1
√

R4
0 + L4

, (2.23)

which is time-independent.

Thus, in the open string frame, the effective metric and non-commutativity parameter

are well behaved all the way through the evolution of the brane. The coupling constant

diverges as R → 0. From the point of view of open string matter probes on the brane, the

sphere contracts to a finite size and then expands again as can be seen from eq. (2.15).

But the expansion results eventually in a strongly coupled phase.

The ‘open string’ parameters Gµν , Gs and Θ appearing in the above action are the

ones which more naturally would appear in the description of the brane degrees of freedom

in terms of non-commutative field variables. We shall show in the next sections how such a

description is realized if we replace the smooth membrane configuration (and the uniform

background magnetic field) with a system of N D0-branes, and re-derive the effective action

for the fluctuations from the non-abelian DBI action of the D0-brane system in the large-

N limit. In the D0-brane description the non-commutative variables are N × N matrices;

alternatively, the non-commutative variables can be expressed in terms of functions on a

fuzzy sphere whose coordinates are non-commutative [20].

One may turn off the scalar fluctuations χ and consider only fluctuations of the gauge

field on spherical branes. In this set up one has a continuum fluid description of the D0-

branes on the collapsing brane. Indeed the gauge invariant field strength Fµν describes

the density and currents of the particles.3 This continuum description eventually breaks

down for two reasons: Firstly the non-commutativity parameter increases, indicating that

the fuzziness in area spreads over larger distances. Secondly the gauge field fluctuations

become strongly coupled.

2.1 Strong coupling radius

Let us now determine the size of the brane at which the strong coupling phenomenon

appears. First notice that the coupling constant g2
Y M is dimensionful, with units of energy.

Thus the dimensionless effective coupling constant is given by g2
Y M/Eproper, where Eproper

is a typical proper energy scale of the fluctuating modes. The dependence of the effective

coupling constant on the energy reminds us that in 2+1 dimensions the Yang Mills theory

is weakly coupled in the ultraviolet and strongly coupled in the infrared. Because of the

spherical symmetry of the background solution, angular momentum is conserved including

interactions. Thus as the brane collapses, we may determine the relevant proper energy

scale in terms of the angular momentum quantum numbers characterizing the fluctuating

modes.

3Such fluid descriptions are given in the brane constructions of [25, 26].
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To this end, let us examine the massless wave equation, as it arises for example for the

transverse scalar fluctuations

∂µ

(
√
−G

g2
Y M

Gµν∂νξ

)

= 0. (2.24)

In terms of angular momentum quantum numbers, this becomes

1

(1 − Ṙ2)
∂2

t ξ̃ +
R2l(l + 1)

(R4 + L4)
ξ̃ = 0 , (2.25)

where we have set ξ = ξ̃(t)Ylm with Ylm being the appropriate spherical harmonic.

The proper energy is given approximately by

Eproper ∼
R

√

l(l + 1)
√

(R4 + L4)
. (2.26)

As the brane collapses the wavelength of massless modes is actually red-shifted! This is

essentially because of the form of the effective open string metric.

Now we let the brane collapse to a size R ¿ N1/2`s. At smaller values of the radius

the effective coupling constant becomes

g2
eff ∼ gsN

2`3
s

R3
√

l(l + 1)
. (2.27)

Clearly this becomes of order one when R approaches the strong coupling radius Rs

Rs = g1/3
s `s

(

N2

√

l(l + 1)

)1/3

= L

(

gs

√
N

√

l(l + 1)

)1/3

. (2.28)

Notice the appearance of `11 = g
1/3
s `s, the characteristic scale of Matrix Theory. For l close

to the cutoff N , Rs ∼ N1/3`11, which is the estimated size of the quantum ground state of

N D0-branes [27, 28]. In general Rs involves an effective N given by Neff ∼ N2/
√

l(l + 1).

We shall discuss these special values of the radius in more detail when we describe the

membrane after taking various interesting limits for the parameters appearing in (2.28).

The coupling constant of the theory (2.8) is time dependent. We can instead choose to

work with a fixed coupling constant absorbing the time-dependence solely in the effective

metric if we perform a suitable conformal transformation. By defining G̃µν = ΛGµν ,

the gauge field kinetic term gets multiplied by a factor of Λ1/2. Then we can re-define

the coupling constant: g̃2
Y M = g2

Y M/
√

Λ. The conformal transformation requires also

suitable re-scalings of the fields χ and ξm as well as appropriate redefinitions of the various

dimensionful parameters of the theory such as m2 and the non-commutativity parameter

Θab.

Choosing Λ = (L4 + R4)/R4, the transformed coupling becomes

g̃2
Y M = gs`

−1
s , (2.29)
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and so it is time independent. The open string metric in this frame is still non singular.

However, the relevant dimensionless coupling is still the effective coupling g2
eff , eq. (2.27),

which for small radii remains large. The effect of the conformal transformation gets rid

of the time dependence in the coupling constant but also red-shifts Eproper by a factor of

Λ−1/2. Therefore, we cannot escape the strong coupling regime in this fashion.

2.2 Overall transverse fluctuations and exactly solvable Schrödinger equation

Another interesting feature of (2.25) is that it is an integrable problem. Using (1 − Ṙ2) =

(R4 + L4)/(R4
0 + L4) the wave equation becomes

∂2
t ξ̃ + l(l + 1)

R2

R4
0 + L4

ξ̃ = 0 . (2.30)

Substituting the solution for the scale factor R, which is known in terms of the Jacobi

elliptic function as R = R0 Cn

(

t
√

2R0√
R4

0
+L4

, 1√
2

)

, we have

∂2
t ξ̃ + l(l + 1)

R2
0

R4
0 + L4

Cn2

(

t
√

2R0
√

R4
0 + L4

,
1√
2

)

ξ̃ = 0 . (2.31)

In [5] the solution to the classical problem is related to an underlying elliptic curve. For

this specific case we can explicitly express the Jacobi-Cn function in terms of Weierstrass-℘

functions of the underlying curve.4 The following relation is true for this case

Cn2

(√
2u,

1√
2

)

=
℘(u; 4, 0) − 1

℘(u; 4, 0) + 1
. (2.32)

For these specific functions the following identity also holds

℘(u + ω3; 4, 0) = −℘(u; 4, 0) − 1

℘(u; 4, 0) + 1
, (2.33)

where ω3 is the purely imaginary half period of the relevant elliptic curve in its Weierstrass

form, and is given by

ω3 = i

∫ 1

0

ds
√

4s(1 − s2)
. (2.34)

After a re-scaling of time t = u
√

L4 + R4
0/R0 we end up with

∂2
uξ̃ + l(l + 1)Cn2

(

u
√

2,
1√
2

)

ξ̃ = ∂2
uξ̃ − l(l + 1)℘(u + ω3; 4, 0)ξ̃ = 0 . (2.35)

This is exactly the g-gap Lamé equation for the ground state of the corresponding one-

dimensional quantum mechanical problem, which has solutions in terms of ratios of Weier-

strass σ-functions (for an application in supersymmetric gauge theories see for exam-

ple [30]).

4The interested reader can find a discussion of the Jacobi Inversion problem and its relevance to mem-

brane collapse in [5] and references therein. The formulas that we present here can be checked by consulting

appendix C of that paper. A complete mathematical review of the Theory of abelian functions can be found

in [29].
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A related solvable Schrödinger problem arises in the one-loop computation of the eu-

clidean path integral. This requires the computation of the determinant of the operator

−∂2
τ +

R(iτ)2
√

R4
0 + L4

l(l + 1), (2.36)

where we have performed an analytic continuation t → iτ . The eigenvalues of the operator

are determined by

−∂2
τ ξ̃ +

R(iτ)2
√

R4
0 + L4

l(l + 1)ξ̃ = λ ξ̃ . (2.37)

In [5] it is shown that R(iτ) = 1/R(τ) and that R2(iτ) = ℘(τ − Ω; 4, 0) where Ω =
∫ 1
0

ds√
4s(1−s2)

. Hence the eigenvalue equation becomes

−∂2
τ ξ̃ + l(l + 1)℘(τ − Ω; 4, 0)ξ̃ = λ ξ̃ , (2.38)

where the eigenstates are also obtained in terms of σ-functions.

We postpone a detailed description and physical interpretation of the solutions of (2.32)

and (2.38) for future work. It is intriguing that equation (2.32) has appeared in the

literature on reheating at the end of inflation [31]. The physical meaning of this similarity,

between fluctuation equations for collapsing D0-D2 systems and those of reheating, remains

to be found.

3. Action for fluctuations from the zero-brane non-abelian DBI

The non-abelian DBI action for zero branes [18, 32] is given by

S = − 1

gs`s

∫

dt STr
√

− det(M) , (3.1)

where

M =

(

−1 λ∂tΦj

−λ∂tΦi Qij

)

(3.2)

and

Qij = δij + iλΦij

λ = 2π`2
s , (3.3)

with the abbreviation

Φij = [Φi,Φj ] . (3.4)

The determinant of M , when the only non-zero scalars lie in the i, j, k ∈ {1, 2, 3} directions,

is given by

− det M = 1 +
λ2

2
ΦijΦji − λ2(∂tΦi)(∂tΦi)

− λ4

2
(∂tΦk)(∂tΦk)ΦijΦji + λ4(∂tΦi)ΦijΦjk(∂tΦk) . (3.5)
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These terms suffice for the calculation of the quadratic action for the fluctuations involving

the gauge field and the radial scalar. However, when we include fluctuations for the scalars

Φm for m = 4 . . . 9 we need the full 10 × 10 determinant. Fortunately, since we will only

be interested in contributions up to quadratic order, the relevant terms will only be those

of order up to λ4

λ2

2
ΦimΦmi

(

1 +
λ2

4
ΦjkΦkj − ∂t(Φi)∂t(Φi)

)

− λ2∂t(Φm)∂t(Φm)

(

1 +
λ2

2
ΦijΦji

)

−λ4

4
ΦmiΦijΦjkΦkm + λ4∂t(Φi)ΦimΦmj∂t(Φj) − λ4∂t(Φm)ΦmiΦij∂t(Φj) . (3.6)

The expansion with terms of order up to λ8 is given in [10].

The D2-brane solution is described by setting Φi = R̂(t)Xi, where the matrices Xi

generate the N -dimensional irreducible representation of SU(2). By substituting this ansätz

into the D0-action, we can derive equations of motion which coincide with those derived

from the D2 DBI-action [3]. In the correspondence we use

R2 = λ2C(R̂)2 , (3.7)

where C is the Casimir of the representation, C = N2 in the large-N limit. Note that the

square root form in the D0-action is necessary to recover the correct time of collapse. If

we use the D0-brane Yang-Mills limit, we get the same functional form of the solution in

terms of Jacobi-Cn functions, but the time of collapse for initial conditions where R0 is

large is incorrect. The correct time of collapse increases as R0 increases toward infinity,

whereas the Yang-Mills limit gives a time which decreases in this limit. The need for the

square root was realized in the context of spatial solutions R̂(σ) which describe D1 ⊥ D3

funnels [9]. We expand around the solution as follows

Φi = R̂Xi + Ai

Ai = 2R̂Ka
i Aa + xiφ

Φm = ξm . (3.8)

The decomposition in the second line above will be explained shortly. Throughout this

section, we will be working in the A0 = 0 gauge.

3.1 Geometry of fuzzy two-sphere: brief review

We review some facts about the fuzzy sphere and its application in Matrix theories.5 As

before, the Xi’s are generators of the SU(2) algebra satisfying

[Xi,Xj ] = 2iεijkXk . (3.9)

With this normalization of the generators, the Casimir in the N dimensional irreducible

representation is given by XiXi = (N2 − 1). If we define xi = Xi/N , we see that

xixi = 1

[xi, xj ] = 0 (3.10)

5See for example [19, 20].
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in the large-N limit. Hence, in the large-N limit the xi’s reduce to cartesian coordinates

describing the embedding of a unit 2-sphere in R
3. For traceless symmetric tensors aj1...jl

the functions aj1...jl
xj1 . . . xjl

describe spherical harmonics in cartesian coordinates. Since

general (traceless) hermitian matrices can be expanded in terms of (traceless) symmetric

polynomials of the Xi’s, hence in terms of the xi’s,
6 all our fluctuations such as Ai or trans-

verse scalars such as ξm become fields on the sphere in the large-N limit. The expansion

of Ai is given by

Ai = ai + ai;jxj + ai;j1j2xj1xj2 + . . . . (3.11)

We can write this as Ai(t, θ, φ), with the time dependence appearing in the coefficients ai,

ai;j1...jl
and the dependence on the angles arising from the polynomial of the xi’s. At finite-

N , two important things happen: The xi’s become non-commutative and the spectrum of

spherical harmonics is truncated at N −1. We will be concerned, in the first instance, with

the large-N limit.

The action of Xi on the unit normalized coordinates follows from the algebra (3.9)

[Xi, xj ] = 2iεijkxk (3.12)

and can be rewritten

−2iεipqxp∂q(xj) . (3.13)

So the adjoint action of Xi can be written as

[Xi, ] = −2iKi = −2iεipqxp∂q

= −2iKa
i ∂a . (3.14)

We have used Killing vectors Ki defined by Ki = εipqxp∂q, which obey xiKi = 0. They

are tangential to the sphere and can be expanded as Ka
i ∂a , where a runs over θ, φ. The

components Ka
i have been used in (3.8) to pick out the tangential gauge field components,

and the radial component φ defined in (3.8) obeys φ = xiAi. It is useful to write down the

explicit components of Ki. The Killing vectors Ka
i are given by

Kθ
1 = − sin φ Kφ

1 = − cot θ cos φ

Kθ
2 = cos φ Kφ

2 = − cot θ sin φ

Kθ
3 = 0 Kφ

3 = 1 .

Some useful formulas are the following

Ka
i Kb

i = ĥab

xiK
a
i = 0

Ka
i Kb

i ∂axj∂bxj = 2

εijkxiK
a
j Kb

k =
εab

sin θ
= ωab (3.15)

6The latter give the correctly normalized spherical harmonics as we will explain later.
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where εθφ = 1. Here ĥab is the round metric on the unit sphere and ωab is the inverse of

the symplectic form. As a related remark, note that

Θab = − λ2N

2(R4 + λ2N2

4 )
εijkxiK

a
j Kb

k = − 2

N

L4

R4 + L4
εijkxiK

a
j Kb

k . (3.16)

We will use these formulas to derive the action for the fluctuations Aa, φ geometrically

as a field theory on the sphere in the large-N limit. We need one more ingredient. The

D0-brane action is expressed in terms of traces, which obey the SU(2) invariance condition

Tr(Φ) = Tr[Xi,Φ]. This can be used to show that if Φ is expressed as Φ = a + ajxj +

aj1j2xj1xj2 + · · · , then the trace is just Na, i.e. it picks out the coefficient of the trivial

SU(2) representation. By using the similar SU(2) invariance property of the standard

sphere integral we have
Tr

N
→ 1

4π

∫

dθdφ sin θ . (3.17)

This relation between traces and integrals makes it clear why we have chosen the cartesian

spherical harmonics to be symmetric traceless combinations of xi1 . . . xil = (Xi1 . . . Xil)/N
l.

Such spherical harmonics obey

∫

dΩYlmYl′m′ =
Tr

N
YlmYl′m′ = δll′δmm′

and are the appropriate functions to appear in (3.11).

We make some further general remarks on the calculation, before stating the result for

the action obtained from the D0-brane picture. Note that the last term in the expansion

of the determinant (3.5) gives zero when we evaluate it on the ansätz Φi = R̂Xi used to

obtain the solution, but it becomes non-trivial in calculating the action for the fluctuations

Φi = R̂Xi + Ai. The zero appears because the symmetrised trace allows us to reshuffle the

Xi with the [Xi,Xj ] for example. Using this property and the commutation relations gives

the desired zero and hence leads to agreement between the effective actions for the radial

variable, as derived from the D2-brane picture.

3.2 The action for the gauge field and radial scalar

Using the ansätz (3.8) we have

[Φi,Φj] = (R̂)2[Xi,Xj ] + R̂[Xi, Aj ] + R̂[Ai,Xj ] + [Ai, Aj ] . (3.18)

The first term scales like N , the second two terms are of order one in the large-N limit,

while the last term is of order 1/N . The last commutator term is sub-leading in 1/N

since the xi’s appearing in (3.11) commute in the strict large-N limit, as of (3.10). When

computing terms such as the potential term ∼ [Φi,Φj]
2, it is important to note that there

are terms of order one coming from squaring R̂[Xi, Aj ]+R̂[Ai,Xj ] as well as from the cross

terms (R̂)2[Xi,Xj ][Ai, Aj ]. For this reason, the underlying non-commutative geometry of

the fuzzy 2-sphere is important in deriving even the leading terms in the dynamics of the

fluctuations.
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The first term in (3.18) is simplified by using the commutation relations to give

2i(R̂)2εijkXk = 2iN(R̂)2εijkxk. The second term can be written as −4i(R̂)2Ka
i ∂a(K

b
j Ab)−

2iKa
i ∂a(xjφ) using (3.14). We can compute the leading 1/N correction arising from the

commutator [Ai, Aj ] as follows. We can think of the unit normalized, non-commuting co-

ordinates xi as quantum angular momentum variables. Since their commutator is given by

[xi, xj ] = (2iεijkxk)/N , the analogue of ~ is given by 2/N , which scales like the inverse of

the spin of the SU(2) representation. Thus the large-N limit is equivalent to the classical

limit in this analogy, and in this case all matrix commutators [A,B] can be approximated

with ‘classical’ Poisson brackets as follows

[A,B] → 2i

N
{A,B} , (3.19)

where {A,B} is the Poisson bracket defined by

{A,B} = ωab∂aA ∂bB , (3.20)

using the inverse-symplectic form appearing in (3.15). As a check note that {xi, xj} =

εijkxk. The commutator [Ai, Aj ] is then given by

[Ai, Aj ] =
2i

N
{Ai, Aj} + O(1/N2) =

2i

N
ωab∂aAi∂bAj + O(1/N2). (3.21)

Substituting in (3.1) and expanding the square root, keeping up to quadratic terms in

the field strength components Fab = ∂aAb − ∂bAa and F0a = ∂tAa, we obtain

−
∫

dt dθ dφ

√
−G

4g2
Y M

GµαGνβFµνFαβ , (3.22)

where the effective metric and coupling constant are the ones appearing in section 2. Hence

we have recovered from the D0-brane action (3.1) the first term of (2.8) obtained from the

small fluctuations expansion of the D2-brane DBI action. We remark that in calculating

the quadratic term in the spatial components of the field strength, the last term in (3.5)

gives zero, but its contribution is important in getting the correct coefficient in front of F 2
0a.

There is a term linear in Fab given by

S1 =
1

2λ2

∫

dt dθ dφ

√
−G

g2
Y M

r4ΘabFab (3.23)

where r is the dimensionless radius variable, r = R/L. This differs from the linear term

obtained from the D2 DBI action by the r4 factor, but the whole term is a total derivative.

As such it vanishes in the sector where the fluctuations do not change the net monopole

charge of the background magnetic field. This is a reasonable restriction to put when

analyzing small fluctuations around a monopole configuration.

At first sight we could also have A2
a contributions, which would amount to a mass

for the gauge field. Such terms coming from ∂tΦi[Φi,Φj ][Φj,Φk]∂tΦk cancel among them-

selves. The contributions from the other three terms of (3.5) cancel each other up to total

derivatives, upon expanding the square root and also performing partial integrations in
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both the spatial and time directions. Here, we need to use the equation of motion for the

scale factor R or R̂. Some useful formulas are given in the appendix A. It is important

to note that this mass term only vanishes if we keep the terms [Xi,Xj ][Ai, Aj ], which are

order one terms obtained by multiplying the order N with the order 1/N commutators.

Next we turn to fluctuations involving the scalar field φ. The spatial part of the

relativistic kinetic term is

− `s

2gs

∫

dt dθ dφ sin θ
(2λNR̂2)ĥab∂aφ∂bφ

√

(1 − λ2N2 ˆ̇R2)(1 + 4λ2N2R̂4)

. (3.24)

This agrees with the D2-calculation (2.8) if we make the natural identification φ = (1 −
λ2N2 ˆ̇R2)1/2χ. Following this, we can match the quadratic terms in ∂tφ and we find again

that we get the same answer as from the D2-side. The overall kinetic term is given by

−
∫

dt dθ dφ

√
−G

2g2
Y M

Gµν∂µχ∂νχ (3.25)

as in (2.8).

For the mass term of χ, we get

− N

4π`sgs

∫

dt dθ dφ sin θ
12λ2R̂2(1 − 4N2λ2R̂4)

(1 + 4N2λ2R̂4)3/2

√

1 − N2λ2 ˆ̇R2

χ2

= −
∫

dt dθ dφ

√
−G

2g2
Y M

6R2(L4 − R4)

(L4 + R4)2(1 − Ṙ2)
χ2 . (3.26)

This agrees with the mass for χ in (2.8). Another thing to note here is that the determinant

will also give contributions linear in φ and ∂tφ and also terms quadratic in the scalar

fluctuation of the form φ ∂tφ. However, upon the expansion of the square root to quadratic

order the overall linear factor of φ cancels. We recall that we are expecting the latter,

since φ is a fluctuation around a background which solves the equations of motion. Upon

conversion to the χ variable the kinetic term for φ will also contribute χ ∂tχ terms. Then

by integrating by parts and dropping the respective total time derivative terms we end up

with the appropriate mass for χ given above.

For the mixing terms between Fab and φ, collecting all the relevant terms one gets

−
∫

dt dθ dφ

√
−G

g2
Y M

8R̂3N

(1 + 4λ2N2R̂4)

√

1 − λ2N2 ˙̂
R2

χΘabFab . (3.27)

Once more, we get exact agreement with the D2-calculation (2.22). Finally the quadratic

action for the scalars ξm obtained by expanding the terms in (3.6) is easily seen to be

−
∫

dt dθ dφ

√
−G

g2
Y M

Gab∂aξm∂bξm , (3.28)

which agrees with (2.8).
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3.3 Scalar fluctuations for the reduced action

We expect to be able to reach the same results for the scalar fluctuations by just considering

the large-N reduced action for the background fields as in [3, 5]

S2 = − 2

gs`sλ

∫

dt
√

1 − Ṙ2

√

R4 +
N2λ2

4
, (3.29)

and consider adding fluctuations R → R + λ
√

1 − Ṙ2 χ as before. One gets

Smass
2 = − 2

gs`sλ

∫

dt
λ2R2(3L4 − 3R4)

2(L4 + R4)3/2
√

1 − Ṙ2
χ2

=
−4L

√
π

g̃s

∫

dt
R2(3L4 − 3R4)

2(L4 + R4)3/2
√

1 − Ṙ2
χ2 (3.30)

the same answer for the mass of the scalar fluctuation as by perturbing the full action (3.1),

when written in terms of g2
Y M and

√
−G.

We can make use of this result to check the behavior of the scalar mass for higher even

spheres. The reduced action for the fuzzy S4 is [5]

S4 = − 4

gs`sλ2N

∫

dt
√

1 − Ṙ2

(

R4 +
λ2N2

4

)

. (3.31)

Perturbing this will result to a mass

Smass
4 = − 4

gs`sλ2N

∫

dt
2λ2R2(3L4 − 5R4)

(L4 + R4)
√

1 − Ṙ2
χ2

= −8
√

π

g̃sL

∫

dt
R2(3L4 − 5R4)

(L4 + R4)
√

1 − Ṙ2
χ2, (3.32)

where we have made use of the appropriate equations of motion.

There is a similar behavior for the S6. The reduced action is [5]

S6 = − 8

gs`sλ3N2

∫

dt
√

1 − Ṙ2

(

R4 +
λ2N2

4

)3/2

, (3.33)

and the result for the mass

Smass
6 = − 8

gs`sλ3N2

∫

dt
12λ2R2(3L4 − 7R4)
√

L4 + R4
√

1 − Ṙ2
χ2

= −48
√

π

g̃sL

∫

dt
R2(3L4 − 7R4)

√
L4 + R4

√

1 − Ṙ2
χ2. (3.34)

The physical behavior remains the same for any k: for the pure N = 0 case the scalar

mass squared is negative from the beginning of the collapse all the way down to zero. At

finite (large) N there is a transition point which depends on the dimensionality k.
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3.4 1/N correction to the action

The derivation of the the action from the D0-brane side can easily be extended to include

1/N corrections. The net outcome will be a non-commutative gauge theory, where products

are replaced by suitable star products. Two important features have to be noted. It is no

longer consistent to assume xiK
a
i = Ka

i xi. This is because

[xi,K
θ
i ] = −2i

N
cot θ

[xi,K
φ
i ] = 0 . (3.35)

We can instead only assume xiKi +Kixi = 0. We also have a first correction to the Leibniz

rule for the partial derivatives

∂a(FG) = (∂aF )G + F (∂bG) − i

N
(∂aω

bc)(∂bF )(∂cG) . (3.36)

This is consistent with

∂a[xi, xj ] = [∂axi, xj ] + [xi, ∂axj ] −
i

N
(∂aω

bc)[∂bxi, ∂cxj] . (3.37)

4. Scaling limits and quantum observables

Given the action we have derived from the D0 and D2-sides, there are several limits to

consider so as to describe the physics.

4.1 The DBI-scaling

Consider gs → 0 , `s → 0 , N → ∞ keeping fixed

R, L = `s

√
πN, gs

√
N ≡ g̃s . (4.1)

In this limit the following parameters appearing in the lagrangian are fixed

g2
Y M =

gs

`s

√
R4 + L4

R2
=

√
πg̃s

L

√
R4 + L4

R2

G00 =
√

1 − Ṙ2

Gab =
R4 + L4

R2
ĥab . (4.2)

We also keep fixed in this limit the energies and angular momenta of field quanta in the

theory.

With this scaling all the quadratic terms of the field theory action on S2 derived from

the D2-brane side in (2.8), (2.22), and reproduced in section 3 from the D0-branes, remain

fixed. Notice that all terms in (3.5) are also of order one and all of them contribute so as

to obtain the small fluctuations action and the parameters of the theory given above. In

addition, since in this limit `s → 0, massive open string modes on the branes decouple, and

we can neglect higher derivative corrections to the DBI action. Further, since gs → 0, we

expect closed string emission to be negligible. This scaling should be compared to scalings
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studied in Matrix Theory in [21, 27, 33 – 37]. In the region R ¿ L, we will consider the

relation to the Matrix Theory limit below.

There are several interesting features of the limit (4.1). It allows us to neglect the

finite size effects of the quantum D0-brane bound state. The quantum field theory we have

derived by expanding around the classical solution might be expected to be invalid in the

regime where the radius of the sphere reaches the size Rq of the quantum ground state of

N D0-branes. This has been estimated to be [27, 28]

Rq = N1/3g1/3
s `s

=
g̃sL

N1/3
. (4.3)

Clearly this is zero in the scaling limit, which gives us reason to believe that the DBI action

is valid all the way to R = 0.

Another issue is gravitational back-reaction. This can be discussed by comparing the

radius of the collapsing object to the gravitational radius of a black hole with the same net

charge. This type of argument is used for example in [38] for studying collapsing domain

walls in four dimensions. We find that in the scaling limit (4.1), gravitational back-reaction

is negligible. To see this consider first the excess energy ∆E of the classical configuration

above the ground state energy of N D0-branes. For extremal black holes the horizon area

is zero. For non-extremal ones, it is directly determined by the excess energy [39]

R8
h = g

25

14
s `

121

14
s

√
N(∆E)

9

14 . (4.4)

Using

∆E =
N

gs`s

(

√

R4
0 + L4

L2
− 1

)

=
N2

g̃sL

(

√

R4
0 + L4

L2
− 1

)

, (4.5)

we find for the horizon radius

R8
h = N

−24

7 g̃
8

7
s L8

(

√

R4
0 + L4

L2
− 1

)
9

14

, (4.6)

which goes to zero in the large-N limit. This shows that gravitational back-reaction result-

ing in the formation of non-extremal black holes does not constrain the range of validity

of the DBI action in our scaling limit.

Another black hole radius we may compare to is the Schwarzschild radius for an object

having energy N
√

R4
0 + L4/(gs`sL

2), as is the case for our membrane configuration. This

comparison is more relevant in the limit R À L where the D0-brane density is small;

in other words the charge density of the relevant black hole is small. In this case we

expect the discussion of [38] to be most relevant. The Schwarzschild radius is given by
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Rsch = (GsE)1/7, or more explicitly

Rsch = N
−3

7 Lg̃
1

7
s

(

√

R4
0 + L4

L2

)
1

7

. (4.7)

This is also zero in the scaling limit (4.1), and hence does not invalidate the DBI action.

Since R is time-dependent, the parameters of the theory are also time-dependent. We

may consider correlators of gauge invariant operators

〈O(t1, σ
a
1)O(t2, σ

a
2) . . .〉 (4.8)

where O can be for example Tr(F 2) or Tr(Φ2), which use the field strength or transverse

scalars. For times t1, t2, . . . corresponding via the classical solution to R near R0, the

Yang-Mills coupling is small, and the approximation where non-linearities of the DBI have

been neglected is a valid one. So we can compute such correlators perturbatively. When

R approaches zero, the Yang-Mills coupling diverges, so we need to use the all-orders

expansion of the DBI action. We have not computed the fluctuation action to all orders,

but it is in principle contained in the full DBI action.

An interesting observable is 〈0|χ|0〉 which gives quantum corrections to the classical

path. In time dependent backgrounds, one can typically define distinct early and late

times vacua because positive and negative frequency modes at early and late times can

be different. If we set up an early times vacuum in the ordinary manner, and write χ

as a linear combination of early times creation and annihilation operators, the one point

function of χ in the late times vacuum may be non-zero indicating particle production.

The non-trivial relation between in and out-vacua is certainly to be expected for all the

fields in the theory, since it is a generic feature of quantum fields in a time dependent

background [40]. Recent applications in the decay of unstable branes include [41 – 43].

We have argued that radiation into closed string states is negligible because their

coupling constant gs → 0 in the scaling limit (4.1). In the context of open string tachyon

condensation, describing brane decay, the zero coupling limit of closed string emission was

shown not to approach zero as naively expected because of a divergence coming from a

sum over stringy states [42]. Here we may hope to escape this difficulty because `s → 0

means that the infinite series of massive closed string states decouple and the Hagedorn

temperature goes to infinity. Of course in the tachyonic context [42], the limit `s → 0

could not be taken since it would force the tachyon to be infinitely massive as well. To

prove that there is no closed string production will require computation of the one-loop

partition function in the theory expanded around the solution and showing that any non-

vanishing imaginary part obtained in the limit (4.1) can be interpreted in terms of the

DBI action (3.1). Such computations in a supersymmetric context are familiar in Matrix

Theory. Recent work has also explored the non-supersymmetric context [44].

We have argued that open strings on the membrane eventually become strongly coupled

when the physical radius is given by eq. (2.28). This special value for the radius remains

fixed in our scaling limit: Rs ∼ (g̃s)
1/3L. It can be made arbitrarily small if we take g̃s suf-

ficiently small. But for any fixed value of this coupling, however small it is, strong coupling
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quantum effects are eventually needed to understand the subsequent membrane evolution.

Quantum processes may cause the original brane with N units of D0-brane charge to split

into configurations of smaller charge. However such non-perturbative phenomena should

be describable within the full non-abelian D0-brane action (3.1).

We can also construct multi-membrane configurations. For example, we can construct

m coincident spherical membranes if we start with the non-abelian DBI action of mN

D0-branes and replace the background values of the matrices Φi in (3.8) with the following

block-diagonal forms [20]

R̂Xi → R̂Xi ⊗
�

m. (4.9)

The fluctuation matrices Ai are replaced by

Ai →
m2

∑

1

Aα
i ⊗ Tα (4.10)

where the m × m matrices Tα are generators of U(m). Taking the large-N limit, while

keeping m fixed, the action for the fluctuations should result in a non-abelian U(m) gauge

theory on a sphere describing a collection of m coincident spherical D2-branes. The field

strength of the U(1) part of this gauge group attains a background value corresponding to

mN units of flux on the sphere. We expect the effective metric and coupling constant of

this theory to be given by the same formulas that we have derived before. Separate stacks

of D2-branes can be constructed by giving an appropriate vacuum expectation value to one

of the transverse scalars; that is, by ‘Higgsing’ the U(M) gauge group. The net background

magnetic flux should now split appropriately among the separate stacks. Within this set-

up, one can study non-perturbative instanton processes that result into transferring of

D0-branes from one membrane stack to another, as in [45]. The effective dimensionless

coupling of such processes is given approximately by g2
Y M/〈φ〉, where 〈φ〉 is the relevant

Higgs VEV. When the branes are large, that is R > L, this coupling can be kept small if

we take g̃s small, and such processes are exponentially suppressed. But when the radius

becomes small, the theory becomes strongly coupled and such non-perturbative processes

become relevant.

4.2 The D0 Yang Mills (Matrix theory) limit

In this limit, we take R/L = r as well as r0 to be small. We will show how the effective

action for the fluctuations in this regime can be derived from the BFSS Matrix Model [22].

Earlier work on this model appears in [23, 24].

The effective parameters of the theory are Gµν , Gs and Θab. In terms of the dimen-

sionless radius variable r, these are given by

G00 = −
√

r4 + 1

r4
0 + 1

, Gab =
Nλ

2

(

r2 +
1

r2

)

ĥab

Gs = gs

√
r4 + 1

r2

Θab = − 2εab

N(1 + r4) sin θ
. (4.11)
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When r, r0 ¿ 1, these take the following ‘zero slope’ form [17, 46]

G00 → G̃00 = 1, Gab → G̃ab = −λ2(Bh−1B)ab =
Nλ

2r2
ĥab

Gs → G̃s = gs det(λBh−1)
1

2 =
gs

r2

Θab → Θ̃ab = (B−1)ab = − 2εab

N sin θ
. (4.12)

Notice that the rate of collapse Ṙ is given by

Ṙ2 = r4
0 − r4 (4.13)

in this regime. In particular, this remains small throughout the collapse of the brane.

We can ‘derive’ these zero slope parameters from the effective action of the constituent

D0-branes in the small-r regime. The background fields scale as

Φi = R̂Xi =
( r

2L

)

Xi

∂tΦi = (∂tR̂)Xi ∼
(

√

r4
0 − r4

2L2

)

Xi. (4.14)

We assume a similar scaling behavior for the fluctuations Ai = 2R̂Ka
i Aa + xiφ and their

time derivatives ∂tAi in the small-r regime. That is, we take the gauge field Aa to be of

order one while the radial fluctuations xiφ to be at most of the order r/L in magnitude.

Similarly, the velocity fields ∂tAa and xi∂tφ are required to be of order r/L and r2/L2

respectively. This is a reasonable requirement for the behavior of the fluctuations so as to

keep them smaller or at least comparable to the background values of the fields. Then the

full fields Φi and their time derivatives are sufficiently small in the small-r regime, and the

D0-brane effective action (3.1) takes the form of a 0 + 1 dimensional Yang-Mills action:

S =
(2π)2`3

s

gs

∫

dt

[

Tr

(

1

2
∂tΦi∂tΦi +

1

4
[Φi,Φj ]

2

)

− N

λ2

]

. (4.15)

The second and third terms in (3.5) scale as r4 in the limit, while the last two terms as

higher powers of r. In the small-r regime, we can neglect the last two terms of (3.5) and

expand the square root of the DBI action dropping higher powers of r. We end up with

an action that is quadratic in the time derivatives of the fields and quartic in the fields

themselves.7 Roughly speaking, in this regime each D0-brane is moving slowly enough so

that the non-relativistic, small velocity expansion of the DBI lagrangian can be applied

ending up with (4.15). This expansion is valid if we choose the initial radius parameter r0

to be small enough, or the initial physical radius to satisfy R0 ¿ L. Essentially the Yang

Mills regime is valid when the effective separation of neighboring D0-branes is smaller than

7A similar expansion can be consistently carried out for the fields Φm that are transverse to the R
3

where the membrane is embedded.
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the string scale throughout the collapse of the brane. Finally, in this regime the equation

of motion for the scale factor is given by

¨̂
R + 8R̂3 = 0

r̈ +
2

L2
r3 = 0. (4.16)

Setting Φi = R̂Xi + Ai, we can determine a matrix model for the fluctuating fields Ai.

This matrix model is equivalent to a non-commutative U(1) Yang Mills theory on a fuzzy

sphere [20]. This correspondence maps hermitian matrices to functions on the sphere, and

replaces the matrix product with a suitable non-commutative star product. To see how

the non-commutative gauge fields arise, we examine the transformation of the fluctuating

matrices Ai under time independent infinitesimal U(N) gauge transformations, which are

symmetries of the action (4.15). Under such a gauge transformation, the matrices Φi and

Ai transform as follows

δλΦi = i[λ,Φi]

δλAi = −iR̂[Xi, λ] + i[λ,Ai], (4.17)

with λ an N × N hermitian matrix. Using equation (3.14), the corresponding function on

the sphere transforms as8

δλAi = 2R̂Ka
i ? ∂aλ + i(λ ? Ai − Ai ? λ), (4.18)

where λ is now taken to be a local function on the sphere. Thus we end up with a U(1)

non-commutative gauge transformation. The gauge covariant field strength is given by

Fij = iR̂[Xi, Aj ] − iR̂[Xj , Ai] + i[Ai, Aj ] + 2R̂εijkAk = i[Φi,Φj] + 2R̂εijkΦk. (4.19)

The last equation makes gauge covariance manifest. The field strength Fij is zero when the

fluctuations are set to zero, while the commutator [Φi,Φj] attains a background expectation

value given by R̂2[Xi,Xj ].

In the commutative limit, the non-commutative gauge transformations (4.18) reduce

to ordinary local U(1) gauge transformations. As we already discussed, this is equivalent

to a large-N limit. Decomposing Ai = 2R̂Ka
i Aa + xiφ we see that in the commutative

limit, the tangential fields Aa transform as the components of a gauge field on the sphere,

δλAa = ∂aλ, while the transverse field φ as a scalar. The full non-commutative gauge trans-

formation (4.18) though mixes φ and the vector field Aa [20]; this is another manifestation

of the fuzziness of the underlying space.

It is easy to see that in the commutative limit the field strength reduces to

Fij → 4R̂2Ka
i Kb

j Fab + 2R̂(xjK
a
i − xiK

a
j )∂aφ − 2R̂εijkxkφ. (4.20)

8We do not use different notation to distinguish the N ×N hermitian matrices from their corresponding

functions on the sphere. We hope the distinction is made clear from the context.
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The deformation arising from the underlying non-commutativity comes from the commu-

tator piece i[Ai, Aj ] in (4.19). Up to the order of 1/N , this deformation is given by (3.21),

and can be rewritten as

i[Ai, Aj ] = Θ̃ab∂aAi∂bAj + O(Θ̃2). (4.21)

We conclude immediately that the underlying non-commutativity parameter is Θ̃.

We can expand the D0-brane Yang Mills action (4.15) to quadratic order in the fluc-

tuations in the large-N limit. Having established the equivalence of the full D0-DBI action

with the D2-brane action to this order in the fluctuations, all we need to do is to replace

the effective metric, coupling constant and non-commutativity parameter with their ‘zero

slope’ values (4.12). Of course, one can carry out the expansion directly using the ac-

tion (4.15) and verify that the parameters of the theory in this regime are indeed given by

G̃µν , g̃2
Y M and Θ̃. The mass of the scalar field χ defined above eq. (3.25) is given by

m2 =
6r2

L2
(4.22)

in this regime and it is positive. Finally, the mixing term becomes

−
∫

dt dθ dφ

√

−G̃

g̃2
Y M

r3

L3
χ(NΘ̃ab)Fab. (4.23)

It is important to realize that non-linearities in the equations of motion, arising from

interaction terms of higher than quadratic order in the non-relativistic lagrangian (4.15),

are all suppressed by factors of 1/N . From the point of view of the U(1) non-commutative

field theory on the fuzzy sphere, all interaction terms arise from the non-commutative

deformation of the field strength (4.19) and they end up being proportional to powers of

Θ̃. It is easy then to see that non-linearities become important at angular momenta of

order l ∼ N1/2 where Θ̃ab∂a ⊗ ∂b is of order one. This fact was also emphasized in the

analysis of [47]. From (2.28) then we see that such angular momentum modes become

strongly coupled when

R ∼ `11N
1/2 (4.24)

or

r ∼ gs
1/3. (4.25)

Roughly, the strong coupling phenomenon occurs when in the closed string frame each

D0-brane occupies an area of order `2
11, smaller than `2

s.

In the scaling limit (4.1), the eleven dimensional Planck length tends to zero like

N−2/3 and the strong coupling radius (4.24) goes to zero. Thus in the limit (4.1) the

evolution of such small branes, described by the D0-brane Yang Mills action (4.15), can

be treated classically throughout the collapse of the brane. We can alternatively take a

different scaling limit so as to probe the short eleven dimensional Planck scale, which sets

the distance scale at which strong coupling quantum phenomena occur in our system in

the non-relativistic regime.
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We can take gs → 0 keeping R and `11 fixed, and also N fixed and large. In this

limit L → ∞ like g
−1/3
s , so that r and also r0 are small. The physical field variables

λΦi ∼ RXi/N , and so they remain fixed in this limit. The same is true for their conjugate

momenta. At the same time each individual D0-brane is getting very heavy since mD0 =

1/gs`s ∼ g
−2/3
s /`11. Hence the D0-branes are slowly moving in this limit. This limit is the

famous DKPS limit [21, 27] in which the short distance scale probed by the D0-branes is the

eleven dimensional Planck scale. Closed strings decouple from the brane system. The same

is true for excited massive open strings on the branes. This is because the energy of the

fluctuating massless open string states is much smaller than the mass of excited open string

oscillators in the limit [21, 27] and so massive open strings cannot get excited. Finally,

in the BFSS limit [22] where the eleven circle radius is decompactified, the membrane we

constructed is just a boosted spherical M-theory membrane.

The strong coupling phenomenon above occurs at a physical radius which is bigger

than the size of the bound quantum ground state (of the N D0-branes) by a factor of

N1/6. However angular momentum modes of order the cutoff N become strongly coupled

when the physical radius R becomes comparable to the size of the ground state `11N
1/3 as

can be seen from (2.28). It is interesting that this scale which is expected to emerge from

a complicated ground state solution of the D0-brane Yang-Mills hamiltonian also appears

in the analysis of the linearized fluctuations of fuzzy spheres.

There is yet another simple way to see the `11 length scale. It involves the application

of the Heisenberg uncertainty principle to the reduced radial dynamics. The momentum

conjugate to R coming from the reduced action (3.29) is

ΠR =

√

R4
0 − R4

gs`3
sπ

. (4.26)

With (∆R) ΠR > ~ and ~ ∼ 1 , we get

(∆R) >
gs`

3
sπ

√

R4
0 − R4

. (4.27)

Evaluating the uncertainty at R = 0 and assuming the whole trajectory lies within the

quantum regime, i.e. R0 ∼ ∆R, we obtain a critical value for the initial radius R0 ∼ Rc

where Rc ∼ g
1/3
s `s, which is the eleven dimensional Planck scale. This simple analysis does

not detect the N1/3 factor that appears in the more complete analysis above.

The above discussion has focused on the region where R is much smaller than L. The

region of R À L or equivalently L = `s

√
πN → 0 is also of interest. In the strict N = 0

limit we have a D2-brane without D0-brane charge. The negative sign of the mass of the

field χ that appears in (3.30) for R > L also appears in the problem of fluctuations around

the pure D2-brane solution. This negative sign indicates that the zero mode of the field χ

is tachyonic in this regime. When R0 is larger than L, the tachyonic mass naively causes

an exponential growth for the zero mode of the fluctuation χ. At this point, higher order

corrections to the action involving the zero mode would become significant. However, the

reduced action for the scalar dynamics has no exponentially growing solutions. This means

that higher order terms stop this exponential growth. In fact, as R crosses L, the sign of
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the mass changes and we go into an oscillatory phase. This transition is reminiscent of a

similar transition which occurs in the equation for fluctuations in inflationary scenarios,

see for example [48]. In the case R0 ≤ L the time evolution of the radial fluctuation does

not encounter the tachyonic region.

4.3 Mixing with graviton scattering states

The key observable in the BFSS Matrix theory limit is the scattering matrix of D0-brane

bound ground states made of N1, N2, . . . Ni D0-branes, where Ni are all large. Since

these interactions are governed by `11, which goes to zero in the scaling limit (4.1), such

interactions among such states become irrelevant. However a simple estimate suggests that

these states can mix with the fuzzy sphere states. Consider an SU(2) representation of spin

j with N = 2j + 1. Consider also matrices

U± =

(

0 0

0 b ± iv

)

.

The diagonal blocks are of size N1 × N1 and (N − N1) × (N − N1). There are also the

standard N×N SU(2) matrices J+, J−, which act in this representation. In the fuzzy sphere

configuration we set X± ≡ (X1 ± iX2) = J± while in the scattering configuration we set

X± = U±. We calculate Tr([J+, U−][J−, U+]) and find this proportional to λ2(R̂)2N(N −
N1). If N1 is a finite fraction of N then this goes like λ2(R̂)2N2 ∼ (R̂)2L4 in the large-N

limit, which is of the same order as the terms in the quadratic action for the fluctuations

we have computed. This indicates that the collapsing membrane can undergo transitions

to these scattering states and conversely the scattering states can give rise to membranes.

5. Discussion and outlook

The discussion of the scaling limit in section 4 is very reminiscent of similar scaling limits

in the context of BFSS Matrix Theory [22] and the AdS/CFT duality [49]. The differ-

ence is that here we are keeping the non-linearities coming from the non-abelian D0-brane

action (3.1). This action is of course less understood than the 0 + 1 SYM of the BFSS

Matrix Model or the 3+1 SYM of the canonical AdS/CFT correspondence. For example a

completely satisfactory supersymmetric version has yet to be written down, although some

progress on this has been discussed in [18]. However it is significant that our scaling discus-

sion of section 4.1 highlights the fact that the appropriate supersymmetrised non-abelian

DBI action should provide a complete quantum mechanical description of the collapsing

D0-D2 system.

This may appear somewhat surprising, but we will argue not unreasonable. When

R is close to R0 we have a Yang-Mills action at weak coupling, and quantum correlation

functions can be computed in a weak coupling expansion. In the strict large-N limit,

the Yang-Mills theory is commutative, while 1/N corrections amount to turning the back-

ground sphere into a non-commutative sphere. When the correlation functions are localized

in regions where the radius is small, the Yang-Mills coupling is large and non-linearities

in the fields become important. There must be a quantum mechanical framework which
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provides the continuation of the correlators to this region. Since `s has been taken to zero,

massive string modes decouple and the only degrees of freedom left to quantize are those

that appear in (3.1). String theory loops degenerate to loops of the fields in this action.

The conjecture suggested by these arguments is that the fate of the collapsing D0 − D2

system in the zero radius region, and in the regime of parameters of section 4, is contained

in the quantum version of the supersymmetrised non-abelian DBI of (3.1). We have out-

lined a framework for calculating quantum corrections to the classical bouncing path, and

discussed processes where one membrane splits into multiple membranes, or membranes

mix with scattering states made of large bound states of zero branes.

It will be interesting to look for a gravitational dual for the decoupled gauge theory of

section 4. One possibility is to start with a time dependent multi-D0 brane solution of the

type considered in [50, 51]. Then a D2-brane could be introduced as a perturbation, as

the D5-brane was introduced in a background of D3 branes in [52]. The gravitational dual

may shed light on the strong coupling regime of R → 0. Another approach for a spacetime

gravitational description is to consider the spherical D0-D2 system as a spherical shell

which causes a discontinuity in the extrinsic curvature due to its stress tensor, and acts

as a monopole source for the two-form field strength due to the D0-branes, and a dipole

source for the four-form field strength due to the spherical D2-brane. As long as the D0-

brane fluid description is valid, it should be possible to view the D0 branes as smeared on

a sphere of time-dependent radius. Exploring the solutions and regimes of validity of these

different gravitational descriptions will undoubtedly be a very interesting avenue for the

future. The recent paper [53] is an example where a gauge theory dual in a time-dependent

set up is proposed.

Any discussion of (3.1) will certainly remind many readers of symmetrised trace issues,

such as those raised by [54]. The system considered here belongs to a class of configurations

which come in families labeled by a size N of matrices where [Φi,Φj] goes to zero in the

large-N limit. Higher even dimensional fuzzy spheres and co-adjoint orbits also belong

to this class. In these cases the large-N limit often has some sort of abelian geometrical

description. For the leading large-N in these cases the ordering of Matrices does not

matter and, at the level of classical equations of motion, the system can be compared

with an abelian dual [10, 11]. Here we have extended the comparison to fluctuations and

found agreement. It will be interesting to see if the comparison can be extended to higher

orders in 1/N , where an appropriate star product is used on the higher brane and the

Matrix product on the D0-brane side is interpreted as a star product on the sphere. A

successful identification will require the correct implementation of the symmetrised trace at

higher orders. Given the subtleties of separating field strengths and derivatives in the non-

abelian case (discussed for example in [55]), it is probably best to approach the question

of symmetrised trace and its corrections by embedding the non-abelian system of interest

into a family of systems labeled by a matrix size N which which can be taken to be large

and admits an abelian limit.

In this paper we have focused on the analysis of fluctuations in the case of time de-

pendent D0-D2 solutions. A similar analysis can be performed in the spatial D1 ⊥ D3

configurations. Some aspects of this problem have already been studied in [56]. In the case
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of systems involving higher dimensional fuzzy spheres, such as D0-D4 (D1⊥D5) systems

or D0-D6 (D1⊥D7) systems, we expect on general grounds that there will be an abelian

description based on a geometry of the form SO(2k+1)/U(k) and a non-abelian description

on the S2k [13, 14, 57, 58]. A detailed fluctuation analysis of the kind studied here should

allow a more precise description of strong and weak coupling regimes. The flat space limit

of our analysis of fluctuations about fuzzy sphere solutions should be related to the work

in [59, 60].

Another interesting avenue is to use the quadratic action we have obtained to do

one and higher loop computations of the partition function and correlators. As indicated

by the connections to integrability in section 2.2, these computations have interesting

mathematical structure. It will also be interesting to incorporate the non-linearities in the

fields perturbatively in the region of R close to R0.
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A. Useful formulas for derivation of fluctuation action from D0-branes

A list of useful formulas is the following

[Φi,Φj][Φj ,Φi] = 8N2R̂4 + 8R̂2 (∂aφ) (∂aφ) + 48R̂2φ2 + 32R̂3Nφ − 48R̂3 εab

sin θ
Fab φ

+32R̂3 εab

sin θ
Ab (∂aφ) − 16R̂4N

εab

sin θ
Fab + 16R̂4FabF

ab + 64R̂4AaA
a

−64R̂4 1

sin2 θ

[

εab(∂θAa)(∂φAb) + Aφ (∂φAθ) cot θ
]

(A.1)

(∂tΦi) (∂tΦi) = N2 ˙̂
R2 − 4R̂2F0aF

0a + φ̇2 + 2
˙̂
RNφ̇

+4(
˙̂

R)2AaA
a + 4R̂

˙̂
R ∂t (AaA

a) (A.2)

(∂tΦi)[Φi,Φj] = 2iR̂
˙̂
RNKa

j (∂aφ) + 4iR̂3NεijpxpK
a
i (∂tAa) (A.3)

(∂tΦi)[Φi,Φj ][Φj ,Φk](∂tΦk) =

= 4R̂2 ˙̂
R2N2ĥab(∂aφ)(∂bφ) + 16R̂6N2ĥab(∂tAa)(∂tAb)

+8
˙̂
RR̂4N2ωab(∂tAa)(∂bφ) − 8

˙̂
RR̂4N2ωab(∂aφ)(∂tAb). (A.4)

To get the quadratic fluctuations we take a square root, expand, use the matrix corre-

spondence between the trace and the integral over the sphere (3.17), and also employ the

equations of motion. Note that, after taking the trace, the terms in the last line in (A.1)

will combine with the linear term −16R̂4N εab

sin θFab to give

−16R̂4Nεab

(

Fab + i[Aa, Ab] +
2

N
(∂cω

cd)(Aa∂dAb)

)

. (A.5)
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We see that Fab gives a total derivative while the last two terms are not individually total

derivatives but combine as such. The need for additional terms in the field strength, beyond

the commutator [Aa, Ab] (defined in (3.19)) was explained in [20]. The terms in (A.5) can

be neglected when we are considering topologically trivial fluctuations.
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